References
[1] McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo LD, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs 2009;79:523-55.
[2] Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change 2013;119:359-74.
[3] Laurion I, Mladenov N. Dissolved organic matter photolysis in Canadian arctic thaw ponds. Environ Res Lett 2013;8.
[4] Negandhi K, Laurion I, Whiticar MJ, Galand PE, Xu XM, Lovejoy C. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic. Plos One 2013;8.
[5] Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009;459:556-9.
[6] Gouttevin I, Menegoz M, Dominé F, Krinner G, Koven C, Ciais P, et al. How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J Geophys Res 2012;117:G02020.
[7] Tremblay B, Levesque E, Boudreau S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ Res Lett 2012;7.
[8] Fortier D, Allard M, Shur Y. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafr Periglac Proc 2007;18:229-43.
[9] St-Hilaire F, Wu J, Roulet NT, Frolking S, Lafleur PM, Humphreys ER, et al. McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments. Biogeosciences 2010;7:3517-30.
[10] Jolivel M, Allard M. Thermokarst and export of sediment and organic carbon in the Sheldrake River watershed, Nunavik, Canada. J Geophys Res 2013;118:1729-45.
[11] Vonk JE, van Dongen BE, Gustafsson O. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys Res Lett 2010;37.
[12] Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, et al. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 2010;55:115-33.
[13] Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M, et al. Variability in exchange of CO(2) across 12 northern peatland and tundra sites. Global Change Biology 2010;16:2436-48.
[14] Roehm CL, Giesler R, Karlsson J. Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex. Journal of Geophysical Research-Biogeosciences 2009;114:G03006.
[15] Tank SE, Lesack LFW, Hesslein RH. Northern Delta Lakes as Summertime CO2 Absorbers Within the Arctic Landscape. Ecosystems 2009;12:144-57.
[16] Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research-Biogeosciences 2008;113:G00A10
[17] Slater AG, Lawrence DM. Diagnosing Present and Future Permafrost from Climate Models. J Clim 2013;26:5608-23.
[18] Bhatt U, Walker D, Raynolds M, Bieniek P, Epstein H, Comiso J, et al. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sensing 2013;5:4229-54.
[19] Liston GE, McFadden JP, Sturm M, Pielke RA. Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biology 2002;8:17-32.
[20] Lawrence DM, Swenson SC. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ Res Lett 2011;6:045504.
[21] Lantz TC, Marsh P, Kokelj SV. Recent Shrub Proliferation in the Mackenzie Delta Uplands and Microclimatic Implications. Ecosystems 2013;16:47-59.
[22] Brown A. Permafrost: Accounting for snow types. Nature Climate Change 2012;2:394-.
[23] Raloff J. Arctic's wintry blanket can be warming. Science News (on line) 2012;1 December 2012.
[24] Wang T, Ottle C, Boone A, Ciais P, Brun E, Morin S, et al. Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model. J Geophys Res 2013;118:6064-79.
[25] Brun E, Vionnet V, Boone A, Decharme B, Peings Y, Valette R, et al. Simulation of northern Eurasian local snow depth, mass and density using a detailed snowpack model and meteorological reanalysis. J Hydrometeorol 2013;14:203-14.
[26] Olefeldt D, Roulet NT, Bergeron O, Crill P, Backstrand K, Christensen TR. Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys Res Lett 2012;39.
[27] Vonk JE, Sanchez-Garcia L, van Dongen BE, Alling V, Kosmach D, Charkin A, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012;489:137-40.
[28] Semiletov IP, Shakhova NE, Pipko II, Pugach SP, Charkin AN, Dudarev OV, et al. Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea. Biogeosciences 2013;10:5977-96.
[29] Kuzyk ZZA, Macdonald RW, Stern GA, Gobeil C. Inferences about the modern organic carbon cycle from diagenesis of redox-sensitive elements in Hudson Bay. Journal of Marine Systems 2011;88:451-62.
[30] Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al., editors. Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2013.
[31] Morin S, Domine F, Arnaud L, Picard G. In-situ measurement of the effective thermal conductivity of snow. Cold Regions Sci Tech 2010;64:73-80.
[32] Entekhabi D, Njoku EG, O'Neill PE, Kellogg KH, Crow WT, Edelstein WN, et al. The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the Ieee 2010;98:704-16.
[33] Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Osterle H, et al. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. J Hydrometeorol 2011;12:823-48.
[34] Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 2012:1-31.